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Abstract. We formalize ‘degrees of fungibility’ by differentiating goods according to
both their underlying attributes and the perceived value and/or usefulness of those at-
tributes to a value assessor. This allows us to distinguish between goods that appear
to be ‘exactly the same’ from those goods that appear to be ‘nearly the same’. Such a
distinction is of particular importance in the design space of digital goods, which may
exist both natively in the digital space and as surrogates, i.e. as digital representations
of physical goods. We provide motivating examples where digital objects are too fungible
for certain desired uses, and proceed to develop a formal framework under which degrees
of fungibility can be defined and characterized. We close by bridging this framework to
applications in machine learning and market design.

1. Introduction

The world is a more standardized place than it used to be. Over the past centuries,
nation states established standardizations like uniform measurements, official languages,
and legal codifications. International institutions and markets took widely varying products
and commoditized them to further price discovery and trade. These projects which so
shaped our modern world were essentially about making things more interchangeable, more
fungible.[1]

If the characteristic project of the past few centuries was to fungibilize the non-fungible,
then the digital realm’s project might well be the opposite. We begin with near-perfect
interchangeability in the world of bits, and from elementary particles of logic we have all
manner of matter with which to build uniqueness. Which meta-data, for instance, are
worth preserving?

If creating, identifying, and valuing non-fungibility is our design challenge then we will
need a sufficient characterization. We hope more precision in these matters can illuminate
a path towards meeting this challenge.

2. Concepts and Intuition

To be fungible is to be interchangeable. The digital money in your bank account, for
instance, is fungible — one dollar is as good as any other dollar. And since these digital
dollars are interchangeable, it would seem bizarre if you went to buy something with a debit
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card and you were asked which “particular” dollar in your checking account you’d like to pay
with. Fungibility as an exchange standard—and the apparent ‘paradoxes’ which can results
from its failure—have been recognized as an important cornerstone for understanding both
micro- and macro-level behavior since at least the work of Nobel Laureate Richard Thaler
[2].

In fact, for digital money in your bank account it isn’t clear what one “particular” dollar
would even mean. These are just counts in a database. And thus each unit of your digital
money is not only functionally interchangeable but is also indistinguishable, salva veritate.
As such, we might say that digital money in a checking account approaches a platonic ideal
of fungibility.12

A dollar in cash strays somewhat from this fungible “ideal”; for instance, one dollar cash
can at least be distinguished from another. A given dollar has different spatio-temporal
coordinates than another certainly, but also may have different serial numbers, years,
markings etc. Such distinguishing aspects make the cash dollar “semi-fungible”.3

Because we don’t usually care which particular dollar we pay for something with, in prac-
tice we tend to treat a cash as fungible.4 However, because cash dollars are distinguishable,
they can be treated as non-fungible if someone chose. For instance, it’s not uncommon
to go into a small business and see framed the particular dollar bill from the business’s
first sale. For the small business owner, that framed dollar bill is not interchangeable with
another.

Now suppose that you secretly switch that business’s framed dollar bill out with another.
Maybe nobody ever notices. But still, there would at least exist the concept of what was
and was not the right bill.5 That this concept of “the right dollar” exists for cash but not
for digital money directs our attention to non-fungibility as a design feature.

Perhaps our example’s business owner and their desire memorialize their first transaction
is insufficiently important to warrant tracking such information. But that may not always
be so.[5] For instance, consider that the digital jersey that an e-sports star wore when they
made the game-saving play does not exist as a good (and is thus not available to fans.) This
may represent a failure of non-fungible design — these e-sports “jerseys” (typically called
“skins”) are not designed to index uniquely important events and associations. They are
thus too fungible for some uses and, given the high price and ubiquity of sports memorabilia,
this is a failure one might expect to be corrected in the future.

1Since we just mentioned Plato, and in the preceding sentence alluded to Leibniz, we might as well
acknowledge that we are treading lightly along some fundamental issues. Theories of identity, reference and
self-reference, and set theoretic reconciliations of the above could all be imagined in the margins here.

2On the other end of things, the platonic ideal of non-fungibility would be something that is maximally
unique, completely unsubstitutable. Perhaps the universe itself?

3This example builds on insights from Matt Condon & Jonathan Mann [3].
4And it’s no accident that fungibility is often tied to some notion of function; the word itself derives

from the Latin meaning ”to perform”. Cash dollars are usually regarded as interchangeable because we
care about their function in getting us something else.

5The right bill is probably the one that exhibited an unbroken conceptual lineage, tracing “exactly one
connected path over space and time”.[4]



A PRACTICAL THEORY OF FUNGIBILITY 3

With problems like these in mind, we proceed to develop a framework in which fungibility
and standardization via commodities can be more rigorously understood and applied.

3. Definitions and Properties

Let us consider first a set of items S. While in principal items may be added or removed
over time, so that the set S depends upon time t (e.g. St), such dynamics will be reserved
for later consideration. Let items have attributes x ∈ X .6 The space X is akin to a feature
space in a machine learning application: it is an encoding of the information about an item
that may be useful in characterizing that object. In general X may be arbitrary, but the
choice to exclude or include a particular descriptor of an item in the space is to decide
what constitutes the item itself.

Formally, an item in our model may be defined as follows:

Definition 1. An item is an element i ∈ S such that there exists a mapping

(1) m : S →M ⊆ X ,
where M is the codomain of m(·) and X denotes the space of attributes describing any
item.

We may think of the attribute space X as encompassing all possible combinations of
attributes that items may have, and the codomains M,M′ of different attribute maps
m(·),m′(·) (resp.) may occupy different subsets of X . In addition, it is not assumed that
all items are perfectly unique (formally, the map m is not assumed to be injective into its
codomain M). This means that it is possible to have items which are indistinguishable
according to their attributes:

Definition 2. Two items i, j ∈ S are indistinguishable under attribute map m if and
only if

(2) m(i) = m(j) ∈M.

It is important to note that indistinguishability is defined relative to a specified map m.
If one constructs another map m′ it may be that m′(i) 6= m′(j) ∈ M′ and in this case, i
and j are indistinguishable under m but are distinguishable under m′.

Definition 3. A subset of items S̄ ⊂ S with common attributes x ∈ X under m is a
commodity:

(3) S̄ := {i ∈ S : m(i) = x}
and the cardinality |S̄| >> 1.

With these definitions in place we can begin to explore the ways in which a value assessor,
such as a consumer, can place value upon (collections of) items via their attributes. We
first proceed with a simple representation of preferences over the attribute space X , using
a collection of functions as the ‘building blocks’ of a utility representation.

6The attribute or characteristic space is a useful description space for multi-faceted goods—cf. e.g. [6]
for the seminal treatment of hedonic goods and their associated pricing for an early example from economics.
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Proposition 1. Consider the attribute space X and suppose there exists a set B of func-
tions f : X → R, called (for reasons given shortly) the set of basis functions, such that
∀f ∈ B a (supremum or an infinity) norm is defined by:

(4) ||f(x)− f(x′)||∞ := max
f∈B
|f(x)− f(x′)| > 0 ∀x, x′ ∈ X , x 6= x′.

Then X is a metric space: there exists a distance measure d : X → R+ such that

(5) d(x, x′) > 0 ∀x, x′ ∈ X , x 6= x′

and d(x, x) = 0 ∀x ∈ X .

Assumption 1. Given any two attribute points x, x′ ∈ X , x 6= x′, the set of basis functions
B is such that

(6) fk(x) = fk(x′)⇒ x = x′, ∀fk ∈ B, ∀k = 1, . . . n,

i.e. every basis function is an injection (a 1:1 function).

The manner in which items are valued depends upon their context, i.e. the circumstances
under which the item finds itself being considered for use. For the purpose of this work,
a context is any circumstance which places a value on an item, or derives a value for an
item. For example, a context may be the circumstances of a consumer of a good (and their
associated preferences under those circumstances), or a specific use case (and its associated
goals or deliverables).

Definition 4. A context is a ‘frame’ (cf. e.g. [7]) within which a value assessor (such as
a consumer) is capable of determining their preferences—here we assume that an assessor
has preferences directly over attributes, rather than directly over items (which provide at-
tributes). We denote a context by c ∈ Rn, i.e. a context is a vector of real numbers, and
n := |B| is the cardinality of the set of basis functions B.

Definition 5. Given a context c ∈ Rn, a utility representation of preferences over
attributes is defined by a function uc : X → R, such that:

(7) uc(x) :=

n∑
k=1

ckfk(x)

where k is an index over the elements of the basis B.7

Defining a utility representation as an expansion over B (which justifies its designation
as a set of basis functions), rather than as being drawn directly from B alone, provides a
richer characterization of utility. For example, even though the set of basis functions B is
injective it is not the case that every context ‘cares about’ every attribute. In other words,

7We assume n < ∞ for simplicity, i.e. there are a finite number of basis functions, but the approach
does not preclude a countable or uncountable infinite of basis functions (where for the latter, the sum is
replaced with an integral) in what follows.
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there may be two attributes x, x′ ∈ X where uc(x) = uc(x
′), but x 6= x′ (compare with

Assumption 1 above).8

A context-dependent utility representation also allows fungibility to be defined by con-
text (and, implicitly, by the mapping m from items to attributes). This means that chang-
ing the context under which attributes are valued may change an item’s fungibility with
another item. From a utility representation point of view, then, fixing a context fixes the
way that attributes can be compared. If two sets of attributes x and x′ provide the same
utility for a given context, their underlying items are said to be fungible:

Definition 6. Two items i, j ∈ S are fungible in context c ∈ Rm if and only if

(8) uc
(
m(i)

)
= uc

(
m(j)

)
,

where the utility function uc : X → R is constructed according to Definition 5 and m : S →
M ⊆ X is the attribute map for the set of items S as defined in Definition 1.

Although we have not defined utility directly from a preference ordering, the definition of
fungibility may also be couched as context dependent indifference: for a particular context,
fungible attributes partition the attribute space into equivalence classes in the same way
that indifference sets (cf. e.g. [9]) partitions the space of goods. Ranking equivalence
classes using e.g. real numbers as the ordinal field (as is usually done in utility theory)
recovers the definition of fungibility given above: a value assessor viewing two items as
fungible may be thought of as being ‘indifferent’ in the attribute space (via the mapping
m) for the given context. If it should happen that two items are fungible for every
context, then we recover a definition of perfect fungibility:

Definition 7. Two items i, j ∈ S are perfectly fungible under B if they are fungible in
all contexts c ∈ Rn.

Theorem 1. Given the set of basis functions B and an attribute mapping m, two items
are perfectly fungible if and only if they are indistinguishable under m.

Corollary 1. All items within a commodity S̄ are perfectly fungible with each other.

Commodities arise naturally from standardization. It makes sense to think of a particular
map m as standard if it is being used to define an invariant for the commodity S̄. In practice
this means that items i ∈ S̄ are manufactured with the express purpose of satisfying the
invariant m(i) = m(j) ∀i, j ∈ S̄. The standard is performative in so far as it brings the
commodity S̄ into existence by defining it, and making it possible to create more items
which satisfy it.

The above constructions provide a formal characterization of the variations of items and
how they manifest as potential variations across different contexts under which these items
might be valued.

8Note that via m it is also possible, for a given context c, to pull back uc to S. If it could be assumed
that m were given and fixed, this would imply a model where products are differentiated in the item space,
rather than in the attribute space–cf. e.g. [8] for a seminal model of monopolistic competition using this
commodity approach (Definition 3 above provides some of the ‘machinery’ for proceeding in this direction).
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4. Relationship to Machine Learning

The above formalism lays the groundwork for interpreting markets as online “machine
learning” processes. This improves our ability to use data driven methods to better under-
stand and forecast future market activity, as well as to design better market mechanisms.
A “better” market mechanism is one capable of distilling private preference signals into
public price signals which are more granular and less noisy, while retaining the ability
to track changes in the underlying signals. For further reading see e.g. [10] for a land-
mark contribution to understanding underlying shocks using time series filtering, [11] for
an overview of time series methods in economics and finance, [12] for an application of
particle filtering for structural parameter estimation and more recently [13] considering
formal game structures as estimation mechanisms.

Building upon Section 3, let us consider an enumerable set9 S with |S| <∞ items in it,
where item attributes are described by the induced metric space (M, d) of an attribute map
m, where |M| <∞ . Furthermore, let us assume that there are a set of events or encounters
where an item i ∈ S has its value revealed for a context c ∈ C ⊂ Rn. Further suppose that
a discrete set of such encounters manifest for a set of contexts with cardinality |C| < ∞.
One might think of C as a cloud of points in Rn where each point is a parameterization of
a utility function uc.

At this point we can look at what kinds of data sets could arise naturally from contexts
such as purchasing decisions over items. We can define a set of encounters as E = {(i, c) :
i ∈ S, c ∈ C}, which can be interpreted as a bipartite graph from vertices which are items
i to vertices which are contexts c. Each encounter e = (i, c) ∈ E implies a unique value
assignment

(9) y(i,c) = uc(m(i)).

In practice, the only direct observation is that item i was purchased for (say) a price p,
where we define the price as an observation based upon the valuation y(i,c) (so that e.g. p =
p(y(i,c)) for some function p(·) over valuations). We may have some model of the attributes
of m(i) ∈ X , but we do not know with certainty what attributes drove the purchase of i.
Furthermore, we may have a set of basis functions over our feature space X but we do not
know with certainty what the vector c ∈ Rn precipitating that purchase was. This may
seem like a lost cause, we know so little! However, this construction is adjacent to the
class of collaborative filtering [15] algorithms commonly used in recommendation engines,
albeit with a focus on regression, rather than binary classification. Collaborative filtering
in particular works well when there are observable features for the contexts such as data
about a platform’s users, in addition to the attributes of items [16]. The method involves
sparse matrix factorizations that can discover which users will prefer which products, using
a form of pattern recognition [17].

However, even if we have no context data our formalism can still be used to inform a
choice of machine learning methods. For example, we may choose to organize event data

9Finiteness of the sets used in this representation is to ensure the computability of the associated machine
learning (e.g. convex optimization [14]) problem.
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as a vector ~p of length r = |E|:

(10) [~p]e = pe = p(y(i,c))

where the index e maps to a pair (i, c). In this form it is clear that we have a bunch of
records of encounters resulting in feature label pairs (features, labels) where x = m(i)
are the features and pe is the label for each event e = (i, c). This is a canonical structure for
supervised machine learning. If we have some knowledge of what kinds of (basis) functions
over the attributes are likely to make up the utility functions, then we can apply non-linear
kernel methods, (cf. e.g. [18]). Specifically, we are interested in machine learning methods
where the model is updated after each new observation rather than trained in batches, as
in [19].

5. Next Steps

Our mathematical representation of fungibility expresses the importance and interde-
pendence of an items descriptions, and the context in which that item is evaluated. This
approach is novel in that it suggests that markets may be shaped by the way items are
described, not merely by what attributes these items have; this point holds doubly for
goods which are natively digital. Furthermore, the definitions we have constructed pro-
vide a basis from which some observed economic phenomena such as Gresham’s law [20]
and context-dependent preference switching [7] can be evaluated. Our next steps include
establishing formal results to this effect.

In addition to giving the mapping of items to attributes first class status in our theory,
we have dismantled our utility functions into linear combinations of basis functions. In
doing so, we make more explicit the inherent similarity “AI” and markets in their capacity
to synthesize data into estimates [21]. In the blockchain world, market designs such as
constant function market makers are increasingly interpreted as price sensors [22].

The practical successes of constant function market makers [23] for price discovery dur-
ing the Cambrian explosion of tokens on the Ethereum network [24] demonstrate market
mechanisms that rely upon signal processing properties which (like online learning algo-
rithms) are derived using iterative convex optimization [25] (or as a generalization of convex
programming, including quasi-convex optimization and generalized geometric programs).
It stands to reason that automated market makers (AMMs) designed according to the
same principle can enable price discovery, even amongst items that are highly variable and
only partially fungible in practice. We will call these markets Automated Regression
Markets (ARMs) and endeavor to derive analytically and demonstrate numerically the
criteria under which such markets can achieve price discovery, even for items whose par-
ticular collection of attributes has not previously been labeled by earlier purchases within
that market.
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6. Appendix: Proof of Theorem 1

[⇒] Consider an attribute map m : S →M ⊆ X and two items i, j ∈ S that are identical
under m, i.e.

m(i) = m(j).

Then ∀c ∈ Rn,

uc(m(i)) :=
∑
k

ckfk(m(i)) =
∑
k

ckfk(m(j)) =: uc(m(j)),

i.e. items i and j are perfectly fungible.
[⇐] Suppose that two items i, j ∈ S are perfectly fungible, i.e. under an attribute map

m, ∀c ∈ Rn,

uc(m(i)) :=
∑
k

ckfk(m(i)) =
∑
k

ckfk(m(j)) =: uc(m(j)).

Since perfect fungibility holds for all c, select a context c̄s := (0, . . . , 1, 0, . . . , 0), i.e. a
context whose sth element is 1 and zero otherwise. Applying this context to the definition
of perfect fungibility implies

uc̄s(m(i)) = fs(m(i)) = fs(m(j)) = uc̄s(m(j)), s ∈ {1, . . . , n}.
Since every basis function is an injection (cf. Assumption 1), this immediately gives

m(i) = m(j),

i.e. items i and j are indistinguishable under m.
�
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